Comprehensive Comparison of Ligand-Based Virtual Screening Tools Against the DUD Data set Reveals Limitations of Current 3D Methods
نویسندگان
چکیده
In recent years, many virtual screening (VS) tools have been developed that employ different molecular representations and have different speed and accuracy characteristics. In this paper, we compare ten popular ligand-based VS tools using the publicly available Directory of Useful Decoys (DUD) data set comprising over 100 000 compounds distributed across 40 protein targets. The DUD was developed initially to evaluate docking algorithms, but our results from an operational correlation analysis show that it is also well suited for comparing ligand-based VS tools. Although it is conventional wisdom that 3D molecular shape is an important determinant of biological activity, our results based on permutational significance tests of several commonly used VS metrics show that the 2D fingerprint-based methods generally give better VS performance than the 3D shape-based approaches for surprisingly many of the DUD targets. To help understand this finding, we have analyzed the nature of the scoring functions used and the composition of the DUD data set itself. We propose that to improve the VS performance of current 3D methods, it will be necessary to devise screening queries that can represent multiple possible conformations and which can exploit knowledge of known actives that span multiple scaffold families.
منابع مشابه
Performance Evaluation of 2D Fingerprint and 3D Shape Similarity Methods in Virtual Screening
Virtual screening (VS) can be accomplished in either ligand- or structure-based methods. In recent times, an increasing number of 2D fingerprint and 3D shape similarity methods have been used in ligand-based VS. To evaluate the performance of these ligand-based methods, retrospective VS was performed on a tailored directory of useful decoys (DUD). The VS performances of 14 2D fingerprints and f...
متن کاملPoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity
Often in pharmaceutical research the goal is to identify small molecules that can interact with and appropriately modify the biological behavior of a new protein target. Unfortunately, most proteins lack both known structures and small molecule binders, prerequisites of many virtual screening, VS, approaches. For such proteins, ligand homology modeling, LHM, that copies ligands from homologous ...
متن کاملSPOT-ligand 2: improving structure-based virtual screening by binding-homology search on an expanded structural template library
Motivation The high cost of drug discovery motivates the development of accurate virtual screening tools. Binding-homology, which takes advantage of known protein-ligand binding pairs, has emerged as a powerful discrimination technique. In order to exploit all available binding data, modelled structures of ligand-binding sequences may be used to create an expanded structural binding template li...
متن کاملFINDSITEcomb: A Threading/Structure-Based, Proteomic-Scale Virtual Ligand Screening Approach
Virtual ligand screening is an integral part of the modern drug discovery process. Traditional ligand-based, virtual screening approaches are fast but require a set of structurally diverse ligands known to bind to the target. Traditional structure-based approaches require high-resolution target protein structures and are computationally demanding. In contrast, the recently developed threading/s...
متن کاملPharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors
Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma andchronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known toreduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. Thismakes the development of PDE4B subtype selective inhibitors a desirable research goal. Toachieve this goal, ligand based pharmacophore m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and modeling
دوره 50 12 شماره
صفحات -
تاریخ انتشار 2010